LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Application of a quantum genetic algorithm and QTAIM analysis in the study of structural and electronic properties of neutral bimetallic clusters NaxLiy (4 ≤ x + y ≤ 10)

Photo by dawson2406 from unsplash

Alloy clusters of NaxLiy (4 ≤ x + y ≤ 10) are studied by exploring the potential energy surface in the ab initio MP2 level with the support of a quantum genetic algorithm (QGA). In some… Click to show full abstract

Alloy clusters of NaxLiy (4 ≤ x + y ≤ 10) are studied by exploring the potential energy surface in the ab initio MP2 level with the support of a quantum genetic algorithm (QGA). In some cases, the structures have been also refined with DFT and coupled-cluster methods. The general trends of sodium-lithium structures are in line with previous studies. The ionization potentials and polarizabilities to all structures were calculated with MP2 method and the average error between these two properties compared with experimental data was 6% and 13%, respectively. The topological analysis based on quantum theory of atoms in molecules (QTAIM) showed that by increasing the cluster size of the diatomic system there was a decrease of atomic interaction energies. The degree of degeneracy from D3BIA aromaticity index and the analysis of the atomic charges showed the influence (by charge transfer) of the chemical element in lower quantity in the cluster with respect to the other atoms. Our achievements of comparing our theoretical results with available experimental data have demonstrated that our approach can also predict satisfactorily quantum atomic and alloy clusters properties, at least, for low nuclearities.

Keywords: clusters naxliy; quantum genetic; analysis; genetic algorithm; application quantum

Journal Title: Journal of Molecular Modeling
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.