LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In-silico identification of adsorbent for separation of ethane/ethylene mixture

Photo from wikipedia

We present here a high-throughput computational screening of 4,821 real metal-organic framework (MOF) structures that do not contain any open metal sites to isolate the best performing candidate for separation… Click to show full abstract

We present here a high-throughput computational screening of 4,821 real metal-organic framework (MOF) structures that do not contain any open metal sites to isolate the best performing candidate for separation of ethane/ethylene mixture at ambient conditions. The MOF structures were assessed on the basis of several adsorption-based separation performance metrics. Some of these metrics were found to correlate strongly among themselves. We have presented various structures-property correlations which unfold useful insights. MOF ATAGEJ is found to be the top performing MOF with highest adsorbent performance score 12.38 mol/kg and regenerability 93.88%. Several other MOFs OTOLIU (MIL-167), UMUMOG (UBMOF-8), and TOVGES (PCN-230) containing tetravalent metal cations such as Zr4+ and Ti4+ are found to be potential structures that are thermally, mechanically, and chemically stable and performs better than zeolites. Adsorption selectivity shows exponential correlation with difference of heat of adsorption of ethane and ethene at 0.1 bar and 298 K. We have also presented how various performance metrics correlate among themselves. These correlations unfold useful insights. Graphical abstract Graphical abstract

Keywords: ethane; ethylene mixture; separation; separation ethane; ethane ethylene

Journal Title: Journal of Molecular Modeling
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.