LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Raman and IR vibration modes of metal pentazolate hydrates [Na(H2O)(N5)]·2H2O and [Mg(H2O)6(N5)2]·4H2O

Photo from wikipedia

The detailed illustrations of the structures, elastic properties, and Raman and IR vibration modes for [Na(H2O)(N5)]·2H2O (a) and [Mg(H2O)6(N5)2]·4H2O (b) have been presented in this investigation by using the first-principles… Click to show full abstract

The detailed illustrations of the structures, elastic properties, and Raman and IR vibration modes for [Na(H2O)(N5)]·2H2O (a) and [Mg(H2O)6(N5)2]·4H2O (b) have been presented in this investigation by using the first-principles method based on the density functional theory. Our results indicate that the active centers of both two types of the energetic metal pentazolate hydrates appear on the cyclo-N5. The bonding character of N atoms in the cyclo-N5 is shown to be covalent, and the cyclo-N5 ring can be considered as an anion. Based on the analysis of elastic properties, we conclude that complex a is easier to deform than b, and both complexes are mechanically stable. From the calculated Raman and IR vibration modes, the vibration in the region of 960–1206 cm−1 (for a) and 985–1208 cm−1 (for b) is determined by basically mixing the cyclo-N5 stretching and deformation modes. The vibrational modes of a and b in their highest frequency zones are both related to the stretching of the O–H bonds.

Keywords: raman vibration; vibration; 2h2o h2o; h2o 2h2o; h2o 4h2o; vibration modes

Journal Title: Journal of Molecular Modeling
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.