LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identification of amphetamine as a stimulant drug by pristine and doped C70 fullerenes: a DFT/TDDFT investigation

Photo from wikipedia

The density functional theory (DFT) was used to examine the electronic reactivity and sensitivity of a pristine, Si, and Al-doped fullerene C70 with AM drug. AM drug has been shown… Click to show full abstract

The density functional theory (DFT) was used to examine the electronic reactivity and sensitivity of a pristine, Si, and Al-doped fullerene C70 with AM drug. AM drug has been shown to be physically absorbed by its N-head on the pristine C70 with an adsorption energy of about − 1.09 kcal/mol and to have no impact on the electric conductivity of that cluster. The atom substitution of Si and Al for C atoms at C70 significantly increases C70 fullerene reactivity, with adsorption energy predictions of approximately − 31.09 and − 45.59 kcal/mol, respectively. The energy difference of LUMO and HOMO, i.e., Eg from C70 fullerene, significantly affects AM drug. Significant LUMO destabilization in Al-C70 by adsorption of the drug AM boosts the electrical conductivity of Al-C70 while generating electric signals that are related to the environmental presence of AM drug. Hence, Al-doped C70 is demonstrated to be an effective electronic AM drug sensor. In contrast to Si-C70 fullerene, significant AM-drug adsorption effects on Fermi and Si-C70 work functions make Si-C70 an Ф-type candidate for AM drug sensor applications. The time-dependent theory of the functional density shows that the AM/Al-C70 complex is steadily situated at a maximum peak of 784.15 nm.

Keywords: adsorption; pristine doped; c70; drug; doped c70

Journal Title: Journal of Molecular Modeling
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.