LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigating functional performance and substituent effect in modelling molecular structure, UV-visible spectra, and optical properties of D-π-A conjugated organic dye molecules: a DFT and TD-DFT study

Photo from wikipedia

The molecular structure, UV-visible spectra, and optical properties of D-π-A conjugated organic dye molecules (Disperse Red 1 (DR1) and Disperse Red 73 (DR73)) were analyzed using density functional theory (DFT)… Click to show full abstract

The molecular structure, UV-visible spectra, and optical properties of D-π-A conjugated organic dye molecules (Disperse Red 1 (DR1) and Disperse Red 73 (DR73)) were analyzed using density functional theory (DFT) and time-dependent density functional theory (TD-DFT) and compared with azobenzene molecule to study the effect of donor and acceptor substituents on the molecular properties. The performance of DFT functionals is investigated using B3LYP hybrid functional and three long-range corrected functionals (CAM-B3LYP, LC-ω PBE, and ω B97XD) in conjunction with 6-31G(d,p) basis set. Using TD-DFT, we calculate the vertical excitation energies and transition dipole moment values for 100 excited states. These values were further utilized to calculate frequency dependent polarizability under sum-over-states (SOS) formalism and refractive index of these molecular systems. We observe that for azobenzene and DR1 molecules, ω B97XD predicted wavelengths corresponding to peak absorbance closest to the experimental results, while for DR73 molecule, B3LYP gave better prediction. Large polarizability response is also observed for these molecules (DR1 and DR73) in comparison to parent azobenzene structure due to charge transfer between donor and acceptor groups. For DR1 and DR73 molecules, αxx component of polarizability dominates in contrast to azobenzene where αyy dominates. The HOMO → LUMO transition during excitation contributes to the peak molecular response in simulated UV-visible spectra. The high polarizability response of selected D-π-A conjugated molecules in comparison to parent molecule suggests that these molecules are promising candidates for tailor-made photonic and optoelectronic device development. Graphical Abstract Functional and substituent effect on the optical response of D-π-A conjugated molecules modelled using DFT and TDDFT. Functional and substituent effect on the optical response of D-π-A conjugated molecules modelled using DFT and TDDFT.

Keywords: substituent effect; dft; response; effect; structure; visible spectra

Journal Title: Journal of Molecular Modeling
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.