Inflammation is a natural protective response toward various simulators, including tissue damage or pathogens. The cyclooxygenase-2 (COX-2) is a very important protein in triggering pain and inflammation. Previous studies have… Click to show full abstract
Inflammation is a natural protective response toward various simulators, including tissue damage or pathogens. The cyclooxygenase-2 (COX-2) is a very important protein in triggering pain and inflammation. Previous studies have claimed that Allium sativum offers a wide range of anti-inflammatory therapeutics for human consumption. Drug discovery is a complicated process, though in silico methods can make this procedure simpler and more cost-effective. At the current study, we performed the virtual screening of eight Allium sativum–derived compounds via molecular docking with COX-2 enzyme and confirmed the binding energy by docking score estimate followed by ADMET and drug-likeness investigation. The resulting highest-docking scored compound was exposed to molecular dynamics simulation (MDS) for evaluating stability of the docked enzyme-ligand complex and to gauge the oscillation and conformational alterations for the time of enzyme-ligand interaction. The factors of RMSD, RMSF, hydrogen bond interactions, and Rg after 100 ns of MDS proved the stability of alliin in the active site of COX-2 in comparison with celecoxib (CEL) as the control. Moreover, we investigated the binding affinity analysis of all compounds via MM/PBSA method. The results from this study suggest that alliin (a sulfuric compound) exhibits a higher binding affinity for the COX-2 enzyme compared to the other compounds and CEL. Alliin showed to be a possible anti-inflammatory therapeutic candidate for managing the inflammatory conditions.
               
Click one of the above tabs to view related content.