LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel potential type electrochemical chiral recognition biosensor for amino acid

Photo from wikipedia

AbstractNovel potential type electrochemical chiral biosensing system with unique capability of distinguishing and quantitating of tyrosine (Tyr) enantiomers by L-cysteic acid and left-handed chiral carbonaceous nanotubes (L-CCNT) modified glassy carbon… Click to show full abstract

AbstractNovel potential type electrochemical chiral biosensing system with unique capability of distinguishing and quantitating of tyrosine (Tyr) enantiomers by L-cysteic acid and left-handed chiral carbonaceous nanotubes (L-CCNT) modified glassy carbon electrode (L-Cys/L-CCNT/GCE) was first developed. The effect of sweep cycles of L-Cys and the kinds of L-CCNT on electrochemical chiral biosensing performance of L-Cys/L-CCNT/GCE were investigated. The electrochemical identification and quantitative determination of L- and D-tyrosine in their mixed solution were successfully achieved based on the different oxidation potential signals. The chiral structure of L-CCNT, the aromatic ring of Tyr, and also the intermolecular hydrogen bond between cysteic acid (CyA) and Tyr could possibly produce the difference in the free energy, which reflects as potential difference of L- and D-tyrosine. A good linear relationship between the potential, current, and different concentration ratios of L- and D-Tyr was obtained. Our present work realizes the simultaneous detection of Tyr enantiomers in their mixed solution based on the different potential signals, and it is of far-reaching significance in real electrochemical chiral biosensor study. Graphical abstractConstruction of chiral recognition interface and the chiral biosensing mechanism for L-Tyr and D-Tyr

Keywords: potential type; chiral recognition; tyr; electrochemical chiral; type electrochemical

Journal Title: Journal of Solid State Electrochemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.