LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrochemical sensor for estriol hormone detection in biological and environmental samples

Photo from archive.org

A stable conducting film for sensing using reduced graphene oxide (RGO), gold nanoparticles (GNPs), and potato starch (PS) is proposed. The characterization of the nanomaterials was obtained by ultraviolet and… Click to show full abstract

A stable conducting film for sensing using reduced graphene oxide (RGO), gold nanoparticles (GNPs), and potato starch (PS) is proposed. The characterization of the nanomaterials was obtained by ultraviolet and visible spectroscopy, dynamic light scattering, zeta potential, Fourier transform infrared spectroscopy, atomic force microscopy, and cyclic voltammetry. The voltammetric behavior of the RGO-GNPs-PS/GCE electrodes was studied in the presence of estriol and the results showed a high anodic peak current at 0.64 V. Under optimal conditions, an analytical curve was obtained, in which the anodic peak estriol was linear in the range from 1.5 to 22 μmol L−1, with a detection limit of 0.48 μmol L−1. The modified electrodes were applied for determination of estriol in environmental and biological samples. The proposed electrode was used for estriol determination in water and urine samples, which presented a recovery range from 92.1 to 106%, showing that RGO-GNPs-PS/GCE is a viable alternative for the detection of estriol and can be attractive for several electrochemical applications.

Keywords: detection; sensor estriol; estriol; estriol hormone; spectroscopy; electrochemical sensor

Journal Title: Journal of Solid State Electrochemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.