LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis and characterization of bio-polymer electrolyte based on iota-carrageenan with ammonium thiocyanate and its applications

Photo by medias_emotiontech from unsplash

AbstractSolid polymer electrolyte based on iota-carrageenan (i-carrageeenan) with ammonium thiocyanate (NH4SCN) has been prepared by solution casting technique using distilled water as solvent. Increase of amorphous nature of the polymer/salt… Click to show full abstract

AbstractSolid polymer electrolyte based on iota-carrageenan (i-carrageeenan) with ammonium thiocyanate (NH4SCN) has been prepared by solution casting technique using distilled water as solvent. Increase of amorphous nature of the polymer/salt complex has been confirmed by XRD analysis. The complex formation between the polymer and salt has been confirmed by FTIR analysis. A shift in glass transition temperature (Tg) of the i-carrageeenan/ NH4SCN electrolytes has been observed from the DSC thermograms. From AC impedance spectroscopy, the maximum conductivity value has been found to be 3.56 × 10−3 S/cm for i-carrageeenan (1 g): NH4SCN (0.3 wt%) at room temperature. Also it has been observed that the activation energy evaluated from the Arrhenius plots has been found to be low (0.21 eV) for i-carrageeenan (1 g): NH4SCN (0.3 wt%) polymer electrolyte. The ionic transference number has been measured using DC Wagner’s polarization method for highest conducting polymer membrane and the result indicates that the conductivity of the electrolyte is predominantly due to ions. The electrochemical stability of the electrolyte i-carrageeenan (1 g): NH4SCN (0.3 wt%) has been studied by linear sweep voltammetry. Using this maximum ionic conductivity polymer electrolyte, the proton battery and fuel cell have been constructed and the cell parameters have been reported. Graphical abstractPossible interaction between i-carrageeenan and NH4SCN.

Keywords: electrolyte based; polymer; electrolyte; carrageeenan nh4scn; polymer electrolyte

Journal Title: Journal of Solid State Electrochemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.