LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of pressure on the electrical and electrochemical behaviour of high-temperature steam electrolyser La0.6Sr0.4Co0.2Fe0.8O3 anode

Photo by fabiooulucas from unsplash

This paper is dedicated to the impact of pressure on the electrochemical behaviour of LSCF (La1-xSrxCoyFe1-yO3-δ) anode in high-temperature electrolysers. This study was carried out with symmetrical cells associating LSCF… Click to show full abstract

This paper is dedicated to the impact of pressure on the electrochemical behaviour of LSCF (La1-xSrxCoyFe1-yO3-δ) anode in high-temperature electrolysers. This study was carried out with symmetrical cells associating LSCF electrodes to a 3YSZ (yttrium-stabilised zirconia) electrolyte. Impedance spectroscopy measurements were performed using a three-electrode configuration, at temperature as high as 700 to 800 °C, in a pressure range from 1 to 30 bar. A clear improvement in terms of electrode resistance decrease is highlighted, mainly due to faster oxygen adsorption/desorption kinetics and a better supply of gas to electrochemical reaction sites. Other assumptions were considered and analysed, such as the impact of pressure on LSCF electrical conductivity and on the mechanical contacts. Thus, three contributions were determined as limiting steps at low pressure, up to 5 bar, whilst for higher pressure, the optimised conditions in operation are reached. This study completes a previous one related to a modelling approach.

Keywords: temperature; high temperature; electrochemical behaviour; influence pressure; pressure

Journal Title: Journal of Solid State Electrochemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.