LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Doped (Nd,Ba)FeO3 oxides as potential electrodes for symmetrically designed protonic ceramic electrochemical cells

Photo from archive.org

The design of new electrode materials with high redox stability has great potential for the fabrication of solid oxide fuel and electrolysis cells having a symmetrical configuration; such a configuration… Click to show full abstract

The design of new electrode materials with high redox stability has great potential for the fabrication of solid oxide fuel and electrolysis cells having a symmetrical configuration; such a configuration is particularly promising in terms of economic and technological factors due to involving a reduced number of functional materials and technological steps. Under the framework of the present study, we developed new Nd1–xBaxFe0.9M0.1O3–δ materials (where M = Cu or Ni, x = 0.4 or 0.6), characterizing their functional properties (oxygen non-stoichiometry, thermomechanical and electrical properties) under both oxidizing and reducing conditions, as well as demonstrating the principal capability of their application as symmetrical electrodes in proton-conducting electrochemical cells. The obtained results demonstrate the desirability of a low barium content due to decreased thermal expansion coefficients and chemical strain contribution and Cu-doping due to the formation of an electrochemically active scaffold having nano-sized sediments. The Nd0.6Ba0.4Fe0.9Cu0.1O3–δ electrodes fabricated onto the BaCe0.5Zr0.3Y0.1Yb0.1O3–δ proton-conducting electrolytes exhibit polarization resistances of 1.1 and 15.1 Ω cm2 at 600 °C in wet air and wet hydrogen measuring atmospheres, respectively. These reported results are among the first concerning the effective operation of symmetrical electrodes in systems with proton-conducting electrolytes. Graphical abstract Graphical abstract

Keywords: oxides potential; electrochemical cells; potential electrodes; proton conducting; doped feo3; feo3 oxides

Journal Title: Journal of Solid State Electrochemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.