LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structure, modification, and commercialization of high nickel ternary material (LiNi0.8Co0.1Mn0.1O2 and LiNi0.8Co0.15Al0.05O2) for lithium ion batteries

Photo by brandi1 from unsplash

LiNi0.8Co0.1Mn0.1O2 (NCM811), as one of the most promising cathode materials for lithium ion batteries, has gained a huge market with its obvious advantages of high energy density and low cost.… Click to show full abstract

LiNi0.8Co0.1Mn0.1O2 (NCM811), as one of the most promising cathode materials for lithium ion batteries, has gained a huge market with its obvious advantages of high energy density and low cost. It has become a competitive material among various cathode materials. However, in NCM811, the phenomenon of “cationic mixed discharge” is serious, resulting the cyclic performance performing badly. In addition, the thermal stability of ternary material will also be poor with the increase of nickel when temperature is high. In view of the above-mentioned situation, researchers come up with different methods to modify LiNi0.8Co0.1Mn0.1O2 by doping and coating to reduce mixing effect and improve its electrochemical performance. Here, we sketch out the structure, properties, and existing problems of NCM811 and summarize some cutting-edge modification methods. Finally, the development direction and commercial application of NCM811 cathode materials are prospected to accelerate its commercialization process.

Keywords: 8co0 1mn0; lini0 8co0; material; ion batteries; 1mn0 1o2; lithium ion

Journal Title: Journal of Solid State Electrochemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.