LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of conductive polypyrrole in poly(acrylonitrile-co-butyl acrylate) water–based binder on the performance of electrochemical double-layer capacitors

Photo from wikipedia

Electrochemical double-layer capacitors (EDLCs) have been widely studied due to their high-power densities, despite their low energy densities compared with those of lithium ion batteries. In particular, there have been… Click to show full abstract

Electrochemical double-layer capacitors (EDLCs) have been widely studied due to their high-power densities, despite their low energy densities compared with those of lithium ion batteries. In particular, there have been numerous studies aiming to developing high surface area carbonic material to increase EDLCs’ capacitance. However, there have been few studies examining water-based polymeric binder as an inactive component of the EDLCs’ electrodes. In this study, we introduce a conductive water-based binder which is synthesized by an in situ two-step polymerization, and use it for EDLC electrodes. Polypyrrole (PPy) is used as an electrically conducting filler for a water-based polyacrylate binder to enhance the electrochemical performance of EDLCs. Consequently, the use of the new poly(pyrrole/acrylonitrile-co-butyl acrylate) (PPyANBA) increases the specific capacitance of the EDLC electrode up to 109.7 F g−1 from the 101.0 F g−1 value of the nonconductive PANBA-containing EDLC electrode at 10,000 cycles. This is mainly attributed to the better dispersion and lower electrical resistance of the PPyANBA binder without losing the thermal, ion transport, and binding characteristics of the PANBA. Graphical abstract

Keywords: layer capacitors; binder; double layer; water based; electrochemical double

Journal Title: Journal of Solid State Electrochemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.