LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Liquefaction response of loose gassy marine sand sediments under cyclic loading

Photo from wikipedia

Gassy sediments have often been encountered in the marine seabed, and they have different features from common saturated and unsaturated soil. By developing and improving an effective methodology, triaxial gassy… Click to show full abstract

Gassy sediments have often been encountered in the marine seabed, and they have different features from common saturated and unsaturated soil. By developing and improving an effective methodology, triaxial gassy sand specimens with different initial gas content (saturation ≥85%) were prepared in the laboratory. Their state parameters can be controlled in real time. A series of undrained dynamic triaxial tests by a Global Digital System (GDS) dynamic testing apparatus were conducted to investigate the liquefaction characteristics of gassy sand sediments. The results show that the gassy sand can liquefy the same as the fully saturated sand, but gas existence monotonically increases the sand liquefaction resistance. The occluded gas bubbles have significant influences on sand liquefaction properties. The dynamic pore pressure of gassy sand shows obvious features of slower accumulation, greater amplitude fluctuation, and deeper groove shape in time history curves of pore water, resulting from the effects of gas compression/expansion, migration, and dissolution/exsolution. By introducing a parameter of saturation, a modified model was proposed to describe the evolution of dynamic pore pressure of gassy sands. It was found that the model parameter θ is linearly dependent on the initial gas content (or initial saturation degree Sr).

Keywords: sand; liquefaction response; liquefaction; gas; sand sediments; gassy sand

Journal Title: Bulletin of Engineering Geology and the Environment
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.