LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrodiagnostic accuracy in polyneuropathies: supervised learning algorithms as a tool for practitioners

Photo from archive.org

Objective The interpretation of electrophysiological findings may lead to misdiagnosis in polyneuropathies. We investigated the electrodiagnostic accuracy of three supervised learning algorithms (SLAs): shrinkage discriminant analysis, multinomial logistic regression, and… Click to show full abstract

Objective The interpretation of electrophysiological findings may lead to misdiagnosis in polyneuropathies. We investigated the electrodiagnostic accuracy of three supervised learning algorithms (SLAs): shrinkage discriminant analysis, multinomial logistic regression, and support vector machine (SVM), and three expert and three trainee neurophysiologists. Methods We enrolled 434 subjects with the following diagnoses: chronic inflammatory demyelinating polyneuropathy (99), Charcot-Marie-Tooth disease type 1A (124), hereditary neuropathy with liability to pressure palsy (46), diabetic polyneuropathy (67), and controls (98). In each diagnostic class, 90% of subjects were used as training set for SLAs to establish the best performing SLA by tenfold cross validation procedure and 10% of subjects were employed as test set. Performance indicators were accuracy, precision, sensitivity, and specificity. Results SVM showed the highest overall diagnostic accuracy both in training and test sets (90.5 and 93.2%) and ranked first in a multidimensional comparison analysis. Overall accuracy of neurophysiologists ranged from 54.5 to 81.8%. Conclusions This proof of principle study shows that SVM provides a high electrodiagnostic accuracy in polyneuropathies. We suggest that the use of SLAs in electrodiagnosis should be exploited to possibly provide a diagnostic support system especially helpful for the less experienced practitioners.

Keywords: accuracy polyneuropathies; accuracy; learning algorithms; polyneuropathies supervised; electrodiagnostic accuracy; supervised learning

Journal Title: Neurological Sciences
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.