The purpose of this paper is to introduce and study an iterative algorithm for solving a general split equality problem. The problem consists of finding a common element of the… Click to show full abstract
The purpose of this paper is to introduce and study an iterative algorithm for solving a general split equality problem. The problem consists of finding a common element of the set of common zero points for a finite family of maximal monotone operators, the set of common fixed points for a finite family of demimetric mappings and the set of common solutions of variational inequality problems for a finite family of inverse strongly monotone mappings in the setting of infinite-dimensional Hilbert spaces. Using our iterative algorithm, we state and prove a strong convergence theorem for approximating a solution of the split equality problem. As special cases, we shall utilize our results to study the split equality equilibrium problems and the split equality optimization problems. Our result complements and extends some related results in literature.
               
Click one of the above tabs to view related content.