LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Solution formulas for differential Sylvester and Lyapunov equations

Photo from wikipedia

AbstractThe differential Sylvester equation and its symmetric version, the differential Lyapunov equation, appear in different fields of applied mathematics like control theory, system theory, and model order reduction. The few… Click to show full abstract

AbstractThe differential Sylvester equation and its symmetric version, the differential Lyapunov equation, appear in different fields of applied mathematics like control theory, system theory, and model order reduction. The few available straight-forward numerical approaches when applied to large-scale systems come with prohibitively large storage requirements. This shortage motivates us to summarize and explore existing solution formulas for these equations. We develop a unifying approach based on the spectral theorem for normal operators like the Sylvester operator $${\mathcal {S}}(X)=AX+XB$$S(X)=AX+XB and derive a formula for its norm using an induced operator norm based on the spectrum of A and B. In view of numerical approximations, we propose an algorithm that identifies a suitable Krylov subspace using Taylor series and use a projection to approximate the solution. Numerical results for large-scale differential Lyapunov equations are presented in the last sections.

Keywords: lyapunov equations; solution formulas; formulas differential; sylvester; differential sylvester

Journal Title: Calcolo
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.