LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Randomised one-step time integration methods for deterministic operator differential equations

Photo from wikipedia

Uncertainty quantification plays an important role in problems that involve inferring a parameter of an initial value problem from observations of the solution. Conrad et al. (Stat Comput 27(4):1065–1082, 2017… Click to show full abstract

Uncertainty quantification plays an important role in problems that involve inferring a parameter of an initial value problem from observations of the solution. Conrad et al. (Stat Comput 27(4):1065–1082, 2017 ) proposed randomisation of deterministic time integration methods as a strategy for quantifying uncertainty due to the unknown time discretisation error. We consider this strategy for systems that are described by deterministic, possibly time-dependent operator differential equations defined on a Banach space or a Gelfand triple. Our main results are strong error bounds on the random trajectories measured in Orlicz norms, proven under a weaker assumption on the local truncation error of the underlying deterministic time integration method. Our analysis establishes the theoretical validity of randomised time integration for differential equations in infinite-dimensional settings.

Keywords: time; integration methods; time integration; operator differential; differential equations

Journal Title: Calcolo
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.