LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exploiting functionalities of biomass in nanocomposite development: application in dye removal and disinfection along with process intensification

Photo from wikipedia

A green synthesis of multifunctional superparamagnetic nanocomposites using the whole unripened fruit of Cassia fistula (Golden shower) with potential for removal of both cationic and anionic dyes and antimicrobial property… Click to show full abstract

A green synthesis of multifunctional superparamagnetic nanocomposites using the whole unripened fruit of Cassia fistula (Golden shower) with potential for removal of both cationic and anionic dyes and antimicrobial property is reported for the first time in the present work. A natural medium in the form of clarified butter was used to enhance the multifunctional character. The surface morphology, textural characteristics and composition of the prepared nanoparticles and composites were studied to understand the multifunctional nature. The dye removal was investigated for four different dyes, namely methyl blue, Congo red, rhodamine-B and auramine. Iron nanoparticles were largely effective in the removal of acidic dyes, while the magnetic nanocomposites were effective for the removal of both acidic and basic dyes which can be attributed to the functionalities imparted from Cassia fistula and clarified butter. The dye removal behavior can be significantly enhanced (~ 50%) using process intensification–adsorption coupled with acoustic cavitation, which also indicated a reduced adsorbent loading as compared to the conventional adsorptive dye removal. The nanomaterials were completely separated from dye solution with absolute ease of separation by applying simple magnetic field. Also, the developed materials were useful in disinfection of E. coli with a high efficiency of 90% confirming significant antimicrobial property at lower concentrations.Graphical Abstract

Keywords: removal; dye removal; process intensification

Journal Title: Clean Technologies and Environmental Policy
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.