LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Relative singularity categories with respect to gorenstein flat modules

Photo from wikipedia

Let R be a right coherent ring and Db(R-Mod) the bounded derived category of left R-modules. Denote by $${D^b}{\left( {R - Mod} \right)_{\widehat {\left[ {GF,C} \right]}}}$$Db(R−Mod)[GF,C]^ the subcategory of Db(R-Mod)… Click to show full abstract

Let R be a right coherent ring and Db(R-Mod) the bounded derived category of left R-modules. Denote by $${D^b}{\left( {R - Mod} \right)_{\widehat {\left[ {GF,C} \right]}}}$$Db(R−Mod)[GF,C]^ the subcategory of Db(R-Mod) consisting of all complexes with both finite Gorenstein flat dimension and cotorsion dimension and Kb(F ∩ C) the bounded homotopy category of flat cotorsion left R-modules. We prove that the quotient triangulated category $${D^b}{\left( {R - Mod} \right)_{\widehat {\left[ {GF,C} \right]}}}$$Db(R−Mod)[GF,C]^/Kb(F ∩ C) is triangle-equivalent to the stable category GF ∩ C of the Frobenius category of all Gorenstein flat and cotorsion left R-modules.

Keywords: gorenstein flat; category; mod; left modules; relative singularity; singularity categories

Journal Title: Acta Mathematica Sinica, English Series
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.