Let R be a right coherent ring and Db(R-Mod) the bounded derived category of left R-modules. Denote by $${D^b}{\left( {R - Mod} \right)_{\widehat {\left[ {GF,C} \right]}}}$$Db(R−Mod)[GF,C]^ the subcategory of Db(R-Mod)… Click to show full abstract
Let R be a right coherent ring and Db(R-Mod) the bounded derived category of left R-modules. Denote by $${D^b}{\left( {R - Mod} \right)_{\widehat {\left[ {GF,C} \right]}}}$$Db(R−Mod)[GF,C]^ the subcategory of Db(R-Mod) consisting of all complexes with both finite Gorenstein flat dimension and cotorsion dimension and Kb(F ∩ C) the bounded homotopy category of flat cotorsion left R-modules. We prove that the quotient triangulated category $${D^b}{\left( {R - Mod} \right)_{\widehat {\left[ {GF,C} \right]}}}$$Db(R−Mod)[GF,C]^/Kb(F ∩ C) is triangle-equivalent to the stable category GF ∩ C of the Frobenius category of all Gorenstein flat and cotorsion left R-modules.
               
Click one of the above tabs to view related content.