This paper is concerned with a popular form of Cahn-Hilliard equation which plays an important role in understanding the evolution of phase separation. We get the existence and regularity of… Click to show full abstract
This paper is concerned with a popular form of Cahn-Hilliard equation which plays an important role in understanding the evolution of phase separation. We get the existence and regularity of a weak solution to nonlinear parabolic, fourth order Cahn-Hilliard equation with degenerate mobility M(u) = um(1 − u)m which is allowed to vanish at 0 and 1. The existence and regularity of weak solutions to the degenerate Cahn-Hilliard equation are obtained by getting the limits of Cahn-Hilliard equation with non-degenerate mobility. We explore the initial value problem with compact support and obtain the local non-negative result. Further, the above derivation process is also suitable for the viscous Cahn-Hilliard equation with degenerate mobility.
               
Click one of the above tabs to view related content.