LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Magic Labeling of Disjoint Union Graphs

Photo by goumbik from unsplash

Let G be a graph with vertex set V(G), edge set E(G) and maximum degree Δ respectively. G is called degree-magic if it admits a labelling of the edges by… Click to show full abstract

Let G be a graph with vertex set V(G), edge set E(G) and maximum degree Δ respectively. G is called degree-magic if it admits a labelling of the edges by integers {1, 2, …, |E(G)|} such that for any vertex v the sum of the labels of the edges incident with v is equal to $${{1 + \left| {E(G)} \right|} \over 2} \cdot d(v)$$ , where d(v) is the degree of v. Let f be a proper edge coloring of G such that for each vertex v ∈ V(G), |{e : e ∈ Ev, f(e) ≤ Δ/2}| = |{e : e ∈ Ev, f(e) > Δ/2}|, and such an f is called a balanced edge coloring of G. In this paper, we show that if G is a supermagic even graph with a balanced edge coloring and m ≥ 1, then (2m + 1)G is a supermagic graph. If G is a d-magic even graph with a balanced edge coloring and n ≥ 2, then nG is a d-magic graph. Results in this paper generalise some known results.

Keywords: labeling disjoint; edge; graph; edge coloring; magic labeling; balanced edge

Journal Title: Acta Mathematica Sinica, English Series
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.