This paper addresses link prediction problem in directed networks by exploiting reciprocative nature of human relationships. It first proposes a null model to present evidence that reciprocal links influence the… Click to show full abstract
This paper addresses link prediction problem in directed networks by exploiting reciprocative nature of human relationships. It first proposes a null model to present evidence that reciprocal links influence the process of “triad formation”. Motivated by this, reciprocal links are exploited to enhance link prediction performance in three ways: (a) a reciprocity-aware link weighting technique is proposed, and existing weighted link prediction methods are applied over the resultant weighted network; (b) new link prediction methods are proposed, which exploit reciprocity; and (c) existing and proposed methods are combined toward supervised prediction to enhance the prediction performance further. All experiments are carried out on two real directed network datasets.
               
Click one of the above tabs to view related content.