LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Isolation of toxic metal-tolerant bacteria from soil and examination of their bioaugmentation potentiality by pot studies in cadmium- and lead-contaminated soil

Photo from wikipedia

Heavy metals, also regarded as toxic metals, are the important environmental pollutants that affect all forms of life. Accumulation of toxic metals in plants results in various biochemical, physiological and… Click to show full abstract

Heavy metals, also regarded as toxic metals, are the important environmental pollutants that affect all forms of life. Accumulation of toxic metals in plants results in various biochemical, physiological and structural disturbances, leading to inhibited growth and sometimes plant death. Toxic metal contamination disturbs the soil ecology as well as the agricultural productivity. Several indigenous microbes can withstand the effect of toxic metal and play a vital role in the revival of tarnished soil. In the present study, soil samples were collected from contaminated crop field of Cachar district of Assam, India. Segregation, enumeration and identification of bacteria from soil samples were performed. Among all the tested isolates, very few were able to withstand a high concentration of Cd and Pb in nutrient agar plates. Toxic metal-tolerant bacteria were identified as Pseudomonas aeruginosa and Bacillus cereus. The isolates having a higher tolerance for Cd and Pb were taken into consideration for pot studies. P. aeruginosa strain SN4 and strain SN5 showed significant results at Cd- and Pb-contaminated soil, evidenced by the healthy growth of Oryza sativa seedlings. However, B. cereus strain SN6 showed high tolerance towards Cd and Pb, but pot experimental studies showed adverse effects on seedling germination and shoot growth of O. sativa. P. aeruginosa strains were significantly able to reduce the negative impact of Cd and Pb in the soil, thus finding an alternative in removal, recovery and remediation of toxic metal-contaminated crop field.

Keywords: toxic metal; soil; metal tolerant; bacteria soil

Journal Title: International Microbiology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.