LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transcriptome and Gene Coexpression Network Analyses of Two Wild Populations Provides Insight into the High-Salinity Adaptation Mechanisms of Crassostrea ariakensis

Photo by elisa_ventur from unsplash

Crassostrea ariakensis naturally distributes in the intertidal and estuary region with relative low salinity ranging from 10 to 25‰. To understand the adaptive capacity of oysters to salinity stress, we… Click to show full abstract

Crassostrea ariakensis naturally distributes in the intertidal and estuary region with relative low salinity ranging from 10 to 25‰. To understand the adaptive capacity of oysters to salinity stress, we conducted transcriptome analysis to investigate the metabolic pathways of salinity stress effectors in oysters from two different geographical sites, namely at salinities of 16, 23, and 30‰. We completed transcriptome sequencing of 18 samples and a total of 52,392 unigenes were obtained after assembly. Differentially expressed gene (DEG) analysis and weighted gene correlation network analysis (WGCNA) were performed using RNA-Seq transcriptomic data from eye-spot larvae at different salinities and from different populations. The results showed that at moderately high salinities (23 and 30‰), genes related to osmotic agents, oxidation-reduction processes, and related regulatory networks of complex transcriptional regulation and signal transduction pathways dominated to counteract the salinity stress. Moreover, there were adaptive differences in salinity response mechanisms, especially at high salinity, in oyster larvae from different populations. These results provide a framework for understanding the interactions of multiple pathways at the system level and for elucidating the complex cellular processes involved in responding to osmotic stress and maintaining growth. Furthermore, the results facilitate further research into the biological processes underlying physiological adaptations to hypertonic stress in marine invertebrates and provide a molecular basis for our subsequent search for high salinity–tolerant populations.

Keywords: crassostrea ariakensis; stress; salinity; gene; high salinity

Journal Title: Marine Biotechnology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.