LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identification of the Domains Involved in Promotion of Silica Formation in Glassin, a Protein Occluded in Hexactinellid Sponge Biosilica, for Development of a Tag for Purification and Immobilization of Recombinant Proteins

Photo from wikipedia

Glassin, a protein occluded in biosilica of the hexactinellid sponge Euplectela, promotes silica formation from silicic acid at room temperature and neutral pH and is characterized by its primary structure… Click to show full abstract

Glassin, a protein occluded in biosilica of the hexactinellid sponge Euplectela, promotes silica formation from silicic acid at room temperature and neutral pH and is characterized by its primary structure which consists of a tandem repeat carrying three distinct domains, histidine and aspartic acid-rich (HD) domain, proline-rich (P) domain, and histidine and threonine-rich (HT) domain. The present study aims to clarify the domain responsible for the promotion of silica formation and to demonstrate usefulness of glassin and its domain as a tag for purification and immobilization of recombinant proteins. When each domain was mixed with silicic acid at neutral pH, silica was formed with HD domain as well as glassin, or a single repeat, but not with P or HT domain. Neither of amino or carboxy-terminal half of HD domain induced silica formation. The amount of silica formed with HD domain was significantly lower than that of glassin or a single repeat. HD domain fused with HT domain raised the amount of silica formed, while a HD domain fused with P domain, a mixture of HD and P domains, or a mixture of HD and HT domains has little effect on the promotion of silica formation. Collectively, a minimum sequence for promotion of silica formation is HD domain, whose activity can be enhanced by HT domain through a topological effect. In addition, practicality of glassin and HD domain was demonstrated by fusion of these sequences to green fluorescent protein which was successfully purified with Ni affinity chromatography and immobilized on silica.

Keywords: silica formation; glassin; promotion silica; domain

Journal Title: Marine Biotechnology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.