LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Novel Dop2/Invertebrate-Type Dopamine Signaling System Potentially Mediates Stress, Female Reproduction, and Early Development in the Pacific Oyster (Crassostrea gigas).

Photo from wikipedia

The dopaminergic signaling pathway is involved in many physiological functions in vertebrates, but poorly documented in protostome species except arthropods. We functionally characterized a novel dopamine receptor in the Pacific… Click to show full abstract

The dopaminergic signaling pathway is involved in many physiological functions in vertebrates, but poorly documented in protostome species except arthropods. We functionally characterized a novel dopamine receptor in the Pacific oyster (Crassostrea gigas), activated by dopamine and tyramine with different efficacy and potency orders. This receptor - Cragi-DOP2R - belongs to the D1-like family of receptors and corresponds to the first representative of the Dop2/invertebrate-type dopamine receptor (Dop2/INDR) group ever identified in Lophotrochozoa. Cragi-DOP2R transcripts were expressed in various adult tissues, with higher expression levels in the visceral ganglia and the gills. Following an experiment under acute osmotic conditions, Cragi-DOP2R transcripts significantly increased in the visceral ganglia and decreased in the gills, suggesting a role of dopamine signaling in the mediation of osmotic stress. Furthermore, a role of the Cragi-DOP2R signaling pathway in female gametogenesis and in early oyster development was strongly suggested by the significantly higher levels of receptor transcripts in mature female gonads and in the early embryonic stages.

Keywords: oyster crassostrea; pacific oyster; dopamine; crassostrea gigas; dop2; oyster

Journal Title: Marine biotechnology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.