LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanical and durability properties of insulation mortar with rubber powder from waste tires

Photo from wikipedia

Fine rubber particles from scrap tires can be used as an insulation material by incorporating with Portland cement mortar. In addition to thermal properties, there are special mechanical and durability… Click to show full abstract

Fine rubber particles from scrap tires can be used as an insulation material by incorporating with Portland cement mortar. In addition to thermal properties, there are special mechanical and durability properties that are important for the insulation mortar. The addition of rubber particles has negative impact on these properties. The special properties for insulation mortar can be improved using cellulose ether, redispersible polymer powder (RPP), and wood fiber. The objective of this study is to investigate the effects of these additives and the rubber powder on the properties of rubberized insulation mortar. With increasing rubber content, both flexural strength and compressive strength were reduced, but the reduction of flexural strength was not as significant as for the compressive strength. At a fixed rubber content, as the optimal amount of RPP and smaller rubber powder were used, the compressive strength of rubberized mortar satisfied the minimum requirement of the type N mortar. The drying shrinkage of the rubber mortar was about the same as the ordinary cement mortar. The permeability of the rubber mortar was low comparing with that of the ordinary cement mortar. The bond strength of the rubber mortar is low due to the reduced effective bonding surface.

Keywords: insulation mortar; strength; rubber powder; mortar; rubber

Journal Title: Journal of Material Cycles and Waste Management
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.