LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Size distribution and metal composition of airborne particles in a waste management facility

Photo from wikipedia

The objective of the current study was to measure the particle mass concentration, mass size distribution, and metal composition of airborne particles in a waste management facility located at Chania… Click to show full abstract

The objective of the current study was to measure the particle mass concentration, mass size distribution, and metal composition of airborne particles in a waste management facility located at Chania (Crete, Greece). Measurements were performed at two locations of the waste management facility. High particulate matter (PM10) concentrations were observed at the indoor site of manual waste sorting. In particular, the average concentration of PM10 was equal to 217 μg/m3 during working hours, while during non-working hours was equal to 60 μg/ m3. The particle mass size distributions were unimodal reflecting the resuspension of coarse particles. Furthermore, the deposited dose of particles and particle-bound metals and their retention in the human respiratory tract was determined using a dosimetry model (ExDoM2). The ExDoM2 model was applied for an adult male worker (06:30–14:30) at the indoor site of a manual waste sorting. The daily working deposited dose of PM10 ranged from 1677 to 3028 μg, while the daily working deposited dose of particle-bound metals ranged from 22 to 39 μg. The highest daily working deposited dose in the respiratory tract is calculated for iron mass (PΜFe) and the daily working deposited dose for PΜFe ranged from 18 to 33 μg.

Keywords: management facility; waste management; management; size; deposited dose

Journal Title: Journal of Material Cycles and Waste Management
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.