We develop and implement a semi-numerical method for computing high-order Taylor approximations of unstable manifolds for hyperbolic fixed points of compact infinite-dimensional maps. The method can follow folds in the… Click to show full abstract
We develop and implement a semi-numerical method for computing high-order Taylor approximations of unstable manifolds for hyperbolic fixed points of compact infinite-dimensional maps. The method can follow folds in the embedding and describes precisely the dynamics on the manifold. In order to ensure the accuracy of our computations in spite of the many truncation and round-off errors, we develop a posteriori error bounds for the approximations. Deliberate control of round-off errors (using interval arithmetic) in conjunction with explicit analytical estimates leads to mathematically rigorous computer-assisted theorems describing precisely the truncation errors for our approximation of the invariant manifold. The method is applied to the Kot-Schaffer model of population dynamics with spatial dispersion.
               
Click one of the above tabs to view related content.