LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exploiting Sparsity for Semi-Algebraic Set Volume Computation

Photo from wikipedia

We provide a systematic deterministic numerical scheme to approximate the volume (i.e., the Lebesgue measure) of a basic semi-algebraic set whose description follows a correlative sparsity pattern. As in previous… Click to show full abstract

We provide a systematic deterministic numerical scheme to approximate the volume (i.e., the Lebesgue measure) of a basic semi-algebraic set whose description follows a correlative sparsity pattern. As in previous works (without sparsity), the underlying strategy is to consider an infinite-dimensional linear program on measures whose optimal value is the volume of the set. This is a particular instance of a generalized moment problem which in turn can be approximated as closely as desired by solving a hierarchy of semidefinite relaxations of increasing size. The novelty with respect to previous work is that by exploiting the sparsity pattern we can provide a sparse formulation for which the associated semidefinite relaxations are of much smaller size. In addition, we can decompose the sparse relaxations into completely decoupled subproblems of smaller size, and in some cases computations can be done in parallel. To the best of our knowledge, it is the first contribution that exploits correlative sparsity for volume computation of semi-algebraic sets which are possibly high-dimensional and/or non-convex and/or non-connected.

Keywords: volume; exploiting sparsity; semi algebraic; sparsity; algebraic set

Journal Title: Foundations of Computational Mathematics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.