LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Matrix homeostasis within the immature annulus fibrosus depends on the frequency of dynamic compression: a study based on the self-developed mechanically active bioreactor

Photo from wikipedia

Evidence suggests that mechanical load is related to structural destruction of disk annulus fibrosus (AF) either in adult disk degeneration or in child disk acute injury. Both biochemical and biomechanical… Click to show full abstract

Evidence suggests that mechanical load is related to structural destruction of disk annulus fibrosus (AF) either in adult disk degeneration or in child disk acute injury. Both biochemical and biomechanical properties are different between immature and mature disks. However, the effects of mechanical compression on immature AF are not fully clear. This study was to investigate the effects of a relatively wide range of dynamic compressive frequency on matrix homeostasis within the immature AF. Immature disks from pig (3–4 months) were randomly assigned into the control group (non-compression) and compression groups (0.1, 0.5, 1.0, 3.0 and 5.0 Hz). All disks were bioreactor-cultured for 7 days. AF matrix production was evaluated by histology, gene expression, glycosaminoglycan (GAG) content, hydroxyproline (HYP) content and immunohistochemistry. Generally, no obvious difference was found in HE staining between control group and compression groups. However, alcian blue staining indicated proteoglycan content in the 5.0-Hz group was decreased compared with the control group and other compression groups. Similarly, a catabolic remodeling gene expression profile with the down-regulated matrix genes (aggrecan, collagen I and collagen II) and tissue inhibitor of metalloproteinases (TIMP-1 and TIMP-3) and the up-regulated matrix catabolic enzymes (ADAMTS-4 and MMP-3) was found in the 5.0-Hz group. Further analysis indicated that GAG content, HYP content and aggrecan protein deposition were also decreased in the 5.0-Hz group. Hence, we concluded that matrix homeostasis within the immature AF was compressive frequency dependent, and the relatively higher frequency (5.0 Hz) is unfavorable for matrix production within the immature AF. These findings will contribute to further understanding of the relationship between mechanical compression and immature AF biosynthesis.

Keywords: compression; homeostasis within; within immature; group; matrix homeostasis; immature

Journal Title: Biomechanics and Modeling in Mechanobiology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.