A continuum mechanics constitutive model is presented for the interaction between swelling and collagen remodeling in biological soft tissue. The model is inherently two-way: swelling stretches the collagen fibers which… Click to show full abstract
A continuum mechanics constitutive model is presented for the interaction between swelling and collagen remodeling in biological soft tissue. The model is inherently two-way: swelling stretches the collagen fibers which affects their rate of degradation—the remodeled fibrous microarchitecture provides selective directional stiffening that causes the swollen tissue to expand more in the unreinforced directions. The constitutive model specifically treats stretch-stabilization wherein the rate of enzymatic-induced degradation of collagen is a decreasing function of fiber stretch. New collagen replacement takes place in a generally swollen environment, and this synthesis is tracked as a function of time by means of a time integration scheme that accounts for the historical sequence of collagen recreation. The model allows for the specification of the collagen pre-stretch at the time of first synthesis, thus allowing for the consideration of either initially limp replacement fiber or initially pre-tensioned replacement fiber. Loading and swelling that occurs on time scales that are commensurate with the natural time scales for fiber degradation and replacement lead to the consideration of time-integral constitutive equations. Loading and swelling that take place on time scales that are very different from that of the remodeling time scales provide a simplified treatment in which there are definite notions of a short-time instantaneous response and also a large-time approach to a steady-state condition of homeostasis.
               
Click one of the above tabs to view related content.