LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of velopharyngeal openings on flow characteristics of nasal emission.

Photo from wikipedia

Nasal emission is a speech disorder where undesired airflow enters the nasal cavity during speech due to inadequate closure of the velopharyngeal valve. Nasal emission is typically inaudible with large… Click to show full abstract

Nasal emission is a speech disorder where undesired airflow enters the nasal cavity during speech due to inadequate closure of the velopharyngeal valve. Nasal emission is typically inaudible with large velopharyngeal openings and very distorting with small openings. This study aims to understand how flow characteristics in the nasal cavity change as a function of velopharyngeal opening using computational fluid dynamics. The model is based on a subject who was diagnosed with distorting nasal emission and a small velopharyngeal opening. The baseline geometry was delineated from CT scans that were taken, while the subject was sustaining a sibilant sound. Modifications to the model were done by systematically widening or narrowing the velopharyngeal opening while keeping the geometry constant elsewhere. Results show that if the flow resistance across the velopharyngeal valve is smaller than resistance across the oral constriction, flow characteristics such as velocity and turbulence are inversely proportional to the size of the opening. If flow resistance is higher across the velopharyngeal valve than the oral constriction, turbulence in the nasal cavity will be reduced at a higher rate. These findings can be used to generalize that the area ratio of the velopharyngeal opening to the oral constriction is a factor that determines airflow characteristics and subsequently its sound during production of sibilant sound. It implies that the highest level of turbulence in the nasal cavity, and subsequently the sound that will likely be perceived as the most severe nasal emission is produced when the size of openings is equal.

Keywords: velopharyngeal; nasal emission; geometry; flow characteristics; nasal cavity; emission

Journal Title: Biomechanics and modeling in mechanobiology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.