LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Residual stress and osmotic swelling of the periodontal ligament.

Photo by elisa_ventur from unsplash

Osmotic swelling and residual stress are increasingly recognized as important factors in soft tissue biomechanics. Little attention has been given to residual stress in periodontal ligament (PDL) biomechanics despite its rapid… Click to show full abstract

Osmotic swelling and residual stress are increasingly recognized as important factors in soft tissue biomechanics. Little attention has been given to residual stress in periodontal ligament (PDL) biomechanics despite its rapid growth and remodeling potential. Those tissues that bear compressive loads, e.g., articular cartilage, intervertebral disk, have received much attention related to their capacities for osmotic swelling. To understand residual stress and osmotic swelling in the PDL, it must be asked (1) to what extent, if any, does the PDL exhibit residual stress and osmotic swelling, and (2) if so, whether residual stress and osmotic swelling are mechanically significant to the PDL's stress/strain behavior under external loading. Here, we incrementally built a series of computer models that were fit to uniaxial loading, osmotic swelling and residual stretch data. The models were validated with in vitro shear tests and in vivo tooth-tipping data. Residual stress and osmotic swelling models were used to analyze tension and compression stress (principal stress) effects in PDL specimens under external loads. Shear-to-failure experiments under osmotic conditions were performed and modeled to determine differences in mechanics and failure of swollen periodontal ligament. Significantly higher failure shear stresses in swollen PDL suggested that osmotic swelling reduced tension and thus had a strengthening effect. The in vivo model's first and third principal stresses were both higher with residual stress and osmotic swelling, but smooth stress gradients prevailed throughout the three-dimensional PDL anatomy. The addition of PDL stresses from residual stress and osmotic swelling represents a unique concept in dental biomechanics.

Keywords: biomechanics; residual stress; stress osmotic; pdl; stress; osmotic swelling

Journal Title: Biomechanics and modeling in mechanobiology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.