Mammographic breast density (MBD) is the most commonly used method to assess the volume of fibroglandular tissue (FGT). However, MRI could provide a clinically feasible and more accurate alternative. There… Click to show full abstract
Mammographic breast density (MBD) is the most commonly used method to assess the volume of fibroglandular tissue (FGT). However, MRI could provide a clinically feasible and more accurate alternative. There were three aims in this study: (1) to evaluate a clinically feasible method to quantify FGT with MRI, (2) to assess the inter-rater agreement of MRI-based volumetric measurements and (3) to compare them to measurements acquired using digital mammography and 3D tomosynthesis. This retrospective study examined 72 women (mean age 52.4 ± 12.3 years) with 105 disease-free breasts undergoing diagnostic 3.0-T breast MRI and either digital mammography or tomosynthesis. Two observers analyzed MRI images for breast and FGT volumes and FGT-% from T1-weighted images (0.7-, 2.0-, and 4.0-mm-thick slices) using K-means clustering, data from histogram, and active contour algorithms. Reference values were obtained with Quantra software. Inter-rater agreement for MRI measurements made with 2-mm-thick slices was excellent: for FGT-%, r = 0.994 (95% CI 0.990–0.997); for breast volume, r = 0.985 (95% CI 0.934–0.994); and for FGT volume, r = 0.979 (95% CI 0.958–0.989). MRI-based FGT-% correlated strongly with MBD in mammography (r = 0.819–0.904, P < 0.001) and moderately to high with MBD in tomosynthesis (r = 0.630–0.738, P < 0.001). K-means clustering-based assessments of the proportion of the fibroglandular tissue in the breast at MRI are highly reproducible. In the future, quantitative assessment of FGT-% to complement visual estimation of FGT should be performed on a more regular basis as it provides a component which can be incorporated into the individual’s breast cancer risk stratification.
               
Click one of the above tabs to view related content.