LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Unsupervised Deep Anomaly Detection for Medical Images Using an Improved Adversarial Autoencoder

Photo from wikipedia

Anomaly detection has been applied in the various disease of medical practice, such as breast cancer, retinal, lung lesion, and skin disease. However, in real-world anomaly detection, there exist a… Click to show full abstract

Anomaly detection has been applied in the various disease of medical practice, such as breast cancer, retinal, lung lesion, and skin disease. However, in real-world anomaly detection, there exist a large number of healthy samples, and but very few sick samples. To alleviate the problem of data imbalance in anomaly detection, this paper proposes an unsupervised learning method for deep anomaly detection based on an improved adversarial autoencoder, in which a module called chain of convolutional block (CCB) is employed instead of the conventional skip-connections used in adversarial autoencoder. Such CCB connections provide considerable advantages via direct connections, not only preserving both global and local information but also alleviating the problem of semantic disparity between the encoding features and the corresponding decoding features. The proposed method is thus able to capture the distribution of normal samples within both image space and latent vector space. By means of minimizing the reconstruction error within both spaces during training phase, higher reconstruction error during test phase is indicative of an anomaly. Our method is trained only on the healthy persons in order to learn the distribution of normal samples and can detect sick samples based on high deviation from the distribution of normality in an unsupervised way. Experimental results for multiple datasets from different fields demonstrate that the proposed method yields superior performance to state-of-the-art methods.

Keywords: deep anomaly; anomaly detection; detection; adversarial autoencoder

Journal Title: Journal of Digital Imaging
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.