LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improving performance of GPS satellite DCB estimation for regional GPS networks using long-term stability

Photo by nampoh from unsplash

Compensation for differential code bias (DCB) is necessary because it is the major source of errors in total electron content (TEC) measurements. The DCB estimation performance is degraded when only… Click to show full abstract

Compensation for differential code bias (DCB) is necessary because it is the major source of errors in total electron content (TEC) measurements. The DCB estimation performance is degraded when only the regional GPS network is used. Because DCB estimation is highly correlated with ionospheric modeling, this degradation is particularly evident for measurements concentrated in an area of high TEC concentration. This study proposes a DCB estimation method that uses the long-term stability of the DCB to improve the estimation performance of the regional GPS network. We estimate satellite DCBs by assuming their constancy over seven months. This extended period increases the number of measurements used in DCB estimation and changes the local time distribution of collected measurements. As a result, the unbalanced distribution of specific ionospheric conditions disappears. Tests are performed using both global and regional networks, and the estimation performance is evaluated based on the position error and pseudorange residuals. First, the difference between the global and regional networks when using the conventional method is analyzed. Second, proposed methods are applied to regional networks. The proposed method can improve the DCB estimation performance, and the results are similar to those obtained using one-day global network data.

Keywords: estimation; dcb estimation; gps; performance; regional gps

Journal Title: GPS Solutions
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.