The Global Positioning System (GPS) provides satellite-based navigation signals, which are employed in many fields, including agriculture, transportation, aviation, and military/personal navigation. In an effort to minimize interference among GPS… Click to show full abstract
The Global Positioning System (GPS) provides satellite-based navigation signals, which are employed in many fields, including agriculture, transportation, aviation, and military/personal navigation. In an effort to minimize interference among GPS satellites and to enable GPS receivers to discern satellite identity, each satellite is assigned a specific pseudorandom noise (PRN) sequence that is used to modulate the phase of the corresponding signal. The codes that modulate the current GPS landscape are constructed in such a way that cross-correlation among codes is kept to a bounded minimum, which should significantly limit harmful signal interference. In this study, the efficacy of the current PRN-based modulation system is called into question as GPS signal amplitude and carrier phase data over the past decade show frequent interference between satellite signals.
               
Click one of the above tabs to view related content.