LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Magnetic Multi-Walled Carbon Nanotubes Matrix Solid-Phase Dispersion with Dispersive Liquid–Liquid Microextraction for the Determination of Ultra Trace Bisphenol A in Water Samples

Photo by a2eorigins from unsplash

Abstract Magnetic nanoparticle-assisted solid-phase dispersion (MMSPD) combined with dispersive liquid–liquid microextraction (DLLME) prior to high performance liquid chromatography with fluorescence detector (HPLC–FLU) is presented for determination of ultra trace Bisphenol… Click to show full abstract

Abstract Magnetic nanoparticle-assisted solid-phase dispersion (MMSPD) combined with dispersive liquid–liquid microextraction (DLLME) prior to high performance liquid chromatography with fluorescence detector (HPLC–FLU) is presented for determination of ultra trace Bisphenol A (BPA) in water. Magnetic multi-walled carbon nanotubes (MMWCNTs) were synthesized for the adsorption of BPA in water. Ultra trace BPA in water was transferred into the elute solvent by the MMSPD and further concentrated into trace volume extraction solvent by the DLLME. The limit of detection and limit of quantitation were 0.003 and 0.01 µg L−1, respectively. Good linearity of BPA was found, ranging from 0.01 to 10 µg L−1, with good squared regression coefficient (R2) of 0.9999. Additionally, relative recoveries were 83.1 and 95.9% for two environmental water samples spiked with 0.20 µg L−1 BPA, respectively. All results showed that the MMWCNTs nanoparticle-assisted MMSPD–DLLME–HPLC–FLU method was simple and reliable for the determination of ultra trace BPA in environmental water.

Keywords: determination ultra; water; ultra trace; liquid

Journal Title: Chromatographia
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.