The retention behavior of polyethylene glycol (PEG) on different types of hydrophobic interaction chromatography (HIC) resins containing butyl, octyl, and phenyl ligands was analyzed. An incomplete elution or splitting of… Click to show full abstract
The retention behavior of polyethylene glycol (PEG) on different types of hydrophobic interaction chromatography (HIC) resins containing butyl, octyl, and phenyl ligands was analyzed. An incomplete elution or splitting of the polymer peak into two parts was observed, where the first one was eluted at the dead time of the column, whereas the second one was strongly retained. The phenomenon was attributed to conformation changes of the polymer upon its adsorption on hydrophobic surface. The effect enhanced with increasing molecular weight of the polymer and hydrophobicity of the HIC media. Addition of PEG to the mobile phase reduced binding of proteins to HIC resins, which was demonstrated with two model systems: lysozyme (LYZ) and immunoglobulin G (IgG), and their mixtures. In case of LYZ, the presence of PEG caused reduction in the protein retention, whereas for IgG—a decrease in efficiency of the protein capture. The effect depended on the adsorption pattern of PEG; it was pronounced in the systems in which conformational changes of the polymer were suggested to occur.
               
Click one of the above tabs to view related content.