LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Metabolic Phenotyping Using UPLC–MS and Rapid Microbore UPLC–IM–MS: Determination of the Effect of Different Dietary Regimes on the Urinary Metabolome of the Rat

Photo from wikipedia

A rapid reversed-phase gradient method employing a 50 mm × 1 mm i.d., C18 microbore column, combined with ion mobility and high-resolution mass spectrometry, was applied to the metabolic phenotyping of urine samples obtained… Click to show full abstract

A rapid reversed-phase gradient method employing a 50 mm × 1 mm i.d., C18 microbore column, combined with ion mobility and high-resolution mass spectrometry, was applied to the metabolic phenotyping of urine samples obtained from rats receiving different diets. This method was directly compared to a “conventional” method employing a 150 × 2.1 mm i.d. column packed with the same C18 bonded phase using the same samples. Multivariate statistical analysis of the resulting data showed similar class discrimination for both microbore and conventional methods, despite the detection of fewer mass/retention time features by the former. Multivariate statistical analysis highlighted a number of ions that represented diet-specific markers in the samples. Several of these were then identified using the combination of mass, ion-mobility-derived collision cross section and retention time including N -acetylglutamate, urocanic acid, and xanthurenic acid. Kynurenic acid was tentatively identified based on mass and ion mobility data.

Keywords: microbore; phenotyping using; mass; metabolic phenotyping; ion mobility; using uplc

Journal Title: Chromatographia
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.