LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermo-Mechanically Coupled Thermo-Elasto-Visco-Plastic Modeling of Thermo-Induced Shape Memory Polyurethane at Finite Deformation

Photo by john_cameron from unsplash

A series of monotonic tensile experiments of thermo-induced shape memory polyurethane (TSMPU) at different loading rates were carried out to investigate the interaction between the internal heat production and the… Click to show full abstract

A series of monotonic tensile experiments of thermo-induced shape memory polyurethane (TSMPU) at different loading rates were carried out to investigate the interaction between the internal heat production and the mechanical deformation. It is shown that the temperature variation on the surfaces of the specimens due to the internal heat production affects the mechanical properties of TSMPU remarkably. Then, based on irreversible thermodynamics, the Helmholtz free energy was decomposed into three parts, i.e., the instantaneous elastic free energy, visco-plastic free energy and heat free energy. The total deformation gradient was decomposed into the mechanical and thermal parts, and the mechanical deformation gradient was further divided into the elastic and visco-plastic components. The Hencky’s logarithmic strain was used in the current configuration. The heat equilibrium equation of internal heat production and heat exchange was derived in accordance with the first and second thermodynamics laws. The temperature of specimens was contributed by the internal heat production and the ambient temperature simultaneously, and a thermo-mechanically coupled thermo-elasto-visco-plastic model was established. The effect of temperature variation of specimens on the mechanical properties of the material was considered in this work. Finally, the capability of the proposed model was validated by comparing the simulated results with the corresponding experimental data of TSMPU.

Keywords: heat; visco plastic; thermo; deformation

Journal Title: Acta Mechanica Solida Sinica
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.