Based on B-spline wavelet on the interval (BSWI) and the multivariable generalized variational principle, the multivariable wavelet finite element for flat shell is constructed by combining the elastic plate element… Click to show full abstract
Based on B-spline wavelet on the interval (BSWI) and the multivariable generalized variational principle, the multivariable wavelet finite element for flat shell is constructed by combining the elastic plate element and the Mindlin plate element together. First, the elastic plate element formulation is derived from the generalized potential energy function. Due to its excellent numerical approximation property, BSWI is used as the interpolation function to separate the solving field variables. Second, the multivariable wavelet Mindlin plate element is deduced and constructed according to the multivariable generalized variational principle and BSWI. Third, by following the displacement compatibility requirement and the coordinate transformation method, the multivariable wavelet finite element for flat shell is constructed. The novel advantage of the constructed element is that the solving precision and efficiency can be improved because the generalized displacement field variables and stress field variables are interpolated and solved independently. Finally, several numerical examples including bending and vibration analyses are given to verify the constructed element and method.
               
Click one of the above tabs to view related content.