LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Prediction of landslide displacement with an ensemble-based extreme learning machine and copula models

Photo by cokdewisnu from unsplash

Research on the dynamics of landslide displacement forms the basis for landslide hazard prevention. This paper proposes a novel data-driven approach to monitor and predict the landslide displacement. In the… Click to show full abstract

Research on the dynamics of landslide displacement forms the basis for landslide hazard prevention. This paper proposes a novel data-driven approach to monitor and predict the landslide displacement. In the first part, autoregressive moving average time series models are constructed to analyze the autocorrelation of landslide triggering factors. A linear ensemble-based extreme learning machine using the least absolute shrinkage and selection operator is applied in predicting the displacement of landslides. Five benchmarking data-driven models, the support vector machine, neural network, random forest, k-nearest neighbor, and the classical extreme learning machine, are considered as baseline models for validating the ensemble-based extreme learning machines. Numerical experiments demonstrated that the proposed prediction model produces the smallest prediction errors among all the algorithms tested. In the second part, parametric copula models are fitted on the predicted displacement, to investigate the relationship between the triggering factors and landslide displacement values. The Gumbel-Hougaard copula model performs best, which indicates strong upper tail correlation between the triggering factors and displacement values. Thresholds for the triggering factors can be obtained by monitoring the landslide moving patterns with large displacement values. The effectiveness and utility of the proposed data-driven approach have been confirmed with the landslide case study in the region of the Three Gorges Reservoir.

Keywords: machine; extreme learning; landslide displacement; displacement; ensemble based; based extreme

Journal Title: Landslides
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.