Recent comprehensive mutation analyses have revealed a relatively small number of driver mutations in esophageal cancer, implicating a limited number of molecular targets, most of which are also implicated in… Click to show full abstract
Recent comprehensive mutation analyses have revealed a relatively small number of driver mutations in esophageal cancer, implicating a limited number of molecular targets, most of which are also implicated in squamous cell carcinoma. In this study, we investigated genetic alterations in 44 esophageal squamous cell carcinomas (ESCC) and 8 adenocarcinomas (EAC) from Japanese patients as potential molecular targets, based on data from the Japanese version of The Genome Atlas (JCGA). Esophageal cancer was characterized by TP53 somatic mutations in ESCC (39/44, 88.6%) and EAC (5/8, 62.5%). In addition to TP53 mutations, somatic mutations in NFE2L2 (16/44, 36.4%), CDKN2A (7/44, 15.9%), and KMT2D (7/44, 15.9%) were more frequently detected in ESCC than in EAC. WRN-truncated type mutations that lead to genomic instability correlate with EAC, but not ESCC. ESCC samples were enriched in ALDH2-associated mutational signature 16 as well as the APOBEC signature. Patients with FAT2 mutations had significantly poorer overall survival compared with those with wild-type status at FAT2 (p < 0.05). Patients with EP300 or PTPRD mutations also had poor progression-free survival compared with respective wild-types (p < 0.05 or p < 0.001). These findings may facilitate future precision medicine approaches based on genomic profiling in ESCC and EAC.
               
Click one of the above tabs to view related content.