LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Study on the statistical intensity distribution (SID) of fluorescent nanoparticles in TIRFM measurement

Photo from wikipedia

Total internal reflection fluorescence microscopy (TIRFM) based on the evanescent wave provides a powerful imaging tool to measure nanoparticle dynamics near the interfaces in nanofluidic and biophysical systems. The most… Click to show full abstract

Total internal reflection fluorescence microscopy (TIRFM) based on the evanescent wave provides a powerful imaging tool to measure nanoparticle dynamics near the interfaces in nanofluidic and biophysical systems. The most dramatic advantage of this technique is encoding the nanoparticle motion in the vertical dimension into intensity variation. However, large measurement uncertainty was found in previous works, which has been a major obstacle for applying TIRFM to nanofluidic studies. In this study, we investigate the statistical intensity distribution (SID) of the fluorescent nanoparticles in the evanescent field. We establish a theoretical description of the SID by considering the Boltzmann distribution of the nanoparticle concentration, the statistical particle size variation, and the focal plane thickness of the objective. The theoretical results show excellent agreement with the experimental SID histogram. We then develop a method to precisely determine the base intensity I0 and decode the vertical positions of nanoparticles, by which the measurement uncertainty of TIRFM can be significantly reduced. This SID method is verified by the nanoparticle tracking velocimetry measurement near the wall using nanoparticles with diameters of 100 nm or 250 nm as tracers. Furthermore, our experiments show that the SID of nanoparticles is sensitive to the salt concentration of the solution and the nanoparticle properties, implying the possibility of using SID as a nano-probe to explore solution or colloidal properties in nanofluidics.

Keywords: statistical intensity; sid; intensity; intensity distribution; distribution sid

Journal Title: Microfluidics and Nanofluidics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.