LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A fixed cytometer chip for identification of cell populations and real-time monitoring of single-cell apoptosis under gradient UV radiation

Photo from wikipedia

Cytometry is a basic method to determine cell populations and morphology. Flow cytometry and hemocytometry are the two most common methods among cytometric technologies. However, flow cytometry needs bulky and… Click to show full abstract

Cytometry is a basic method to determine cell populations and morphology. Flow cytometry and hemocytometry are the two most common methods among cytometric technologies. However, flow cytometry needs bulky and expensive equipment as well as professional operations, while hemocytometry is limited by its simple function. Both of them are not suitable for real-time monitoring of the morphological changes of single cells. Here, we developed a fixed cytometer chip with two functional modes for both identification of cell populations (I-mode) and real-time monitoring of single-cell morphological changes (M-mode). In I-mode, the fixed cytometer chip was employed to evaluate the cell populations, the results were in accordance with those from the hemocytometer counting and flow cytometry. Besides that, the cell populations were further precisely identified by measuring two-color fluorescence intensities of single cells, which were consistent with the dual parameter analysis in flow cytometry. In M-mode, the chip was applied to real-time monitoring of the single-cell apoptosis under gradient UV radiation, generated by a novel stair-like UV shield. The dynamic apoptotic morphologies of a large number of single cells were monitored in real-time by time-lapse imaging. In addition, we integrated eight parallel channels on a 60 mm × 30 mm chip, and the chip could achieve scalable single-cell capture and analysis capability. This fixed cytometer chip is bifunctional, easy-to-handle, universal, and scalable.

Keywords: time monitoring; real time; cell populations; cell; chip

Journal Title: Microfluidics and Nanofluidics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.