LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Assessment of Ablative Therapies in Swine: Response of Respiratory Diaphragm to Varying Doses

Photo from wikipedia

Ablation is a common procedure for treating patients with cancer, cardiac arrhythmia, and other conditions, yet it can cause collateral injury to the respiratory diaphragm. Collateral injury can alter the… Click to show full abstract

Ablation is a common procedure for treating patients with cancer, cardiac arrhythmia, and other conditions, yet it can cause collateral injury to the respiratory diaphragm. Collateral injury can alter the diaphragm’s properties and/or lead to respiratory dysfunction. Thus, it is important to understand the diaphragm’s physiologic and biomechanical properties in response to ablation therapies, in order to better understand ablative modalities, minimize complications, and maximize the safety and efficacy of ablative procedures. In this study, we analyzed physiologic and biomechanical properties of swine respiratory diaphragm muscle bundles when exposed to 5 ablative modalities. To assess physiologic properties, we performed in vitro tissue bath studies and measured changes in peak force and baseline force. To assess biomechanical properties, we performed uniaxial stress tests, measuring force–displacement responses, stress–strain characteristics, and avulsion forces. After treating the muscle bundles with all 5 ablative modalities, we observed dose-dependent sustained reductions in peak force and transient increases in baseline force—but no consistent dose-dependent biomechanical responses. These data provide novel insights into the effects of various ablative modalities on the respiratory diaphragm, insights that could enable improvements in ablative techniques and therapies.

Keywords: response; respiratory diaphragm; diaphragm; force; ablative modalities

Journal Title: Annals of Biomedical Engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.