LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Bag of Wavelet Features for Snore Sound Classification

Photo from wikipedia

Snore sound (SnS) classification can support a targeted surgical approach to sleep related breathing disorders. Using machine listening methods, we aim to find the location of obstruction and vibration within… Click to show full abstract

Snore sound (SnS) classification can support a targeted surgical approach to sleep related breathing disorders. Using machine listening methods, we aim to find the location of obstruction and vibration within a subject’s upper airway. Wavelet features have been demonstrated to be efficient in the recognition of SnSs in previous studies. In this work, we use a bag-of-audio-words approach to enhance the low-level wavelet features extracted from SnS data. A Naïve Bayes model was selected as the classifier based on its superiority in initial experiments. We use SnS data collected from 219 independent subjects under drug-induced sleep endoscopy performed at three medical centres. The unweighted average recall achieved by our proposed method is 69.4%, which significantly ($$p<0.005,$$p<0.005, one-tailed z-test) outperforms the official baseline (58.5%), and beats the winner (64.2%) of the INTERSPEECH ComParE Challenge 2017 Snoring sub-challenge. In addition, the conventionally used features like formants, mel-scale frequency cepstral coefficients, subband energy ratios, spectral frequency features, and the features extracted by the openSMILE toolkit are compared with our proposed feature set. The experimental results demonstrate the effectiveness of the proposed method in SnS classification.

Keywords: snore sound; wavelet features; classification; features snore; bag wavelet

Journal Title: Annals of Biomedical Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.